Description: A theorem close to a closed form of nfs1 . (Contributed by BJ, 2-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-nfs1t | |- ( A. x ( ph -> A. y ph ) -> F/ x [ y / x ] ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbsb3t | |- ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) ) |
|
2 | 1 | axc4i | |- ( A. x ( ph -> A. y ph ) -> A. x ( [ y / x ] ph -> A. x [ y / x ] ph ) ) |
3 | nf5 | |- ( F/ x [ y / x ] ph <-> A. x ( [ y / x ] ph -> A. x [ y / x ] ph ) ) |
|
4 | 2 3 | sylibr | |- ( A. x ( ph -> A. y ph ) -> F/ x [ y / x ] ph ) |