Metamath Proof Explorer


Theorem bj-nfs1t

Description: A theorem close to a closed form of nfs1 . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-nfs1t
|- ( A. x ( ph -> A. y ph ) -> F/ x [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 bj-hbsb3t
 |-  ( A. x ( ph -> A. y ph ) -> ( [ y / x ] ph -> A. x [ y / x ] ph ) )
2 1 axc4i
 |-  ( A. x ( ph -> A. y ph ) -> A. x ( [ y / x ] ph -> A. x [ y / x ] ph ) )
3 nf5
 |-  ( F/ x [ y / x ] ph <-> A. x ( [ y / x ] ph -> A. x [ y / x ] ph ) )
4 2 3 sylibr
 |-  ( A. x ( ph -> A. y ph ) -> F/ x [ y / x ] ph )