Metamath Proof Explorer


Theorem bj-nfs1t2

Description: A theorem close to a closed form of nfs1 . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-nfs1t2
|- ( A. x F/ y ph -> F/ x [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 nf5r
 |-  ( F/ y ph -> ( ph -> A. y ph ) )
2 1 alimi
 |-  ( A. x F/ y ph -> A. x ( ph -> A. y ph ) )
3 bj-nfs1t
 |-  ( A. x ( ph -> A. y ph ) -> F/ x [ y / x ] ph )
4 2 3 syl
 |-  ( A. x F/ y ph -> F/ x [ y / x ] ph )