Description: A theorem close to a closed form of nfs1 . (Contributed by BJ, 2-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-nfs1t2 | |- ( A. x F/ y ph -> F/ x [ y / x ] ph ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nf5r | |- ( F/ y ph -> ( ph -> A. y ph ) ) | |
| 2 | 1 | alimi | |- ( A. x F/ y ph -> A. x ( ph -> A. y ph ) ) | 
| 3 | bj-nfs1t | |- ( A. x ( ph -> A. y ph ) -> F/ x [ y / x ] ph ) | |
| 4 | 2 3 | syl | |- ( A. x F/ y ph -> F/ x [ y / x ] ph ) |