Description: A theorem close to a closed form of nfs1 . (Contributed by BJ, 2-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-nfs1t2 | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nf5r | ⊢ ( Ⅎ 𝑦 𝜑 → ( 𝜑 → ∀ 𝑦 𝜑 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) ) | 
| 3 | bj-nfs1t | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜑 ) → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 Ⅎ 𝑦 𝜑 → Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 ) |