Metamath Proof Explorer


Theorem bj-spimt2

Description: A step in the proof of spimt . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-spimt2 x x = y φ ψ x ψ ψ x φ ψ

Proof

Step Hyp Ref Expression
1 bj-alequex x x = y φ ψ x φ ψ
2 19.35 x φ ψ x φ x ψ
3 1 2 sylib x x = y φ ψ x φ x ψ
4 3 imim1d x x = y φ ψ x ψ ψ x φ ψ