Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
Adding ax-13
bj-spimt2
Next ⟩
bj-cbv3ta
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-spimt2
Description:
A step in the proof of
spimt
.
(Contributed by
BJ
, 2-May-2019)
Ref
Expression
Assertion
bj-spimt2
⊢
∀
x
x
=
y
→
φ
→
ψ
→
∃
x
ψ
→
ψ
→
∀
x
φ
→
ψ
Proof
Step
Hyp
Ref
Expression
1
bj-alequex
⊢
∀
x
x
=
y
→
φ
→
ψ
→
∃
x
φ
→
ψ
2
19.35
⊢
∃
x
φ
→
ψ
↔
∀
x
φ
→
∃
x
ψ
3
1
2
sylib
⊢
∀
x
x
=
y
→
φ
→
ψ
→
∀
x
φ
→
∃
x
ψ
4
3
imim1d
⊢
∀
x
x
=
y
→
φ
→
ψ
→
∃
x
ψ
→
ψ
→
∀
x
φ
→
ψ