Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
Distinct var metavariables
bj-hbnaeb
Next ⟩
bj-dvv
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-hbnaeb
Description:
Biconditional version of
hbnae
(to replace it?).
(Contributed by
BJ
, 6-Oct-2018)
Ref
Expression
Assertion
bj-hbnaeb
⊢
¬
∀
x
x
=
y
↔
∀
z
¬
∀
x
x
=
y
Proof
Step
Hyp
Ref
Expression
1
hbnae
⊢
¬
∀
x
x
=
y
→
∀
z
¬
∀
x
x
=
y
2
sp
⊢
∀
z
¬
∀
x
x
=
y
→
¬
∀
x
x
=
y
3
1
2
impbii
⊢
¬
∀
x
x
=
y
↔
∀
z
¬
∀
x
x
=
y