Description: Biconditional version of hbnae (to replace it?). (Contributed by BJ, 6-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-hbnaeb | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbnae | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 2 | sp | ⊢ ( ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑥 = 𝑦 ) | |
| 3 | 1 2 | impbii | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |