Metamath Proof Explorer


Theorem bj-iomnnom

Description: The canonical bijection from (om u. { om } ) onto ( NN0 u. { pinfty } ) maps _om to pinfty . (Contributed by BJ, 18-Feb-2023)

Ref Expression
Assertion bj-iomnnom i ω↪ℕ ω = +∞

Proof

Step Hyp Ref Expression
1 df-bj-iomnn i ω↪ℕ = n ω r 𝑸 | r < 𝑸 suc n 1 𝑜 1 𝑷 ~ 𝑹 0 𝑹 ω +∞
2 1 a1i i ω↪ℕ = n ω r 𝑸 | r < 𝑸 suc n 1 𝑜 1 𝑷 ~ 𝑹 0 𝑹 ω +∞
3 elirr ¬ ω ω
4 3 a1i ¬ ω ω
5 omex ω V
6 5 a1i ω V
7 bj-pinftyccb +∞
8 7 a1i +∞
9 2 4 6 8 bj-fvmptunsn1 i ω↪ℕ ω = +∞
10 9 mptru i ω↪ℕ ω = +∞