Metamath Proof Explorer


Theorem bj-iomnnom

Description: The canonical bijection from (om u. { om } ) onto ( NN0 u. { pinfty } ) maps _om to pinfty . (Contributed by BJ, 18-Feb-2023)

Ref Expression
Assertion bj-iomnnom ( iω↪ℕ ‘ ω ) = +∞

Proof

Step Hyp Ref Expression
1 df-bj-iomnn iω↪ℕ = ( ( 𝑛 ∈ ω ↦ ⟨ [ ⟨ { 𝑟Q𝑟 <Q ⟨ suc 𝑛 , 1o ⟩ } , 1P ⟩ ] ~R , 0R ⟩ ) ∪ { ⟨ ω , +∞ ⟩ } )
2 1 a1i ( ⊤ → iω↪ℕ = ( ( 𝑛 ∈ ω ↦ ⟨ [ ⟨ { 𝑟Q𝑟 <Q ⟨ suc 𝑛 , 1o ⟩ } , 1P ⟩ ] ~R , 0R ⟩ ) ∪ { ⟨ ω , +∞ ⟩ } ) )
3 elirr ¬ ω ∈ ω
4 3 a1i ( ⊤ → ¬ ω ∈ ω )
5 omex ω ∈ V
6 5 a1i ( ⊤ → ω ∈ V )
7 bj-pinftyccb +∞ ∈ ℂ̅
8 7 a1i ( ⊤ → +∞ ∈ ℂ̅ )
9 2 4 6 8 bj-fvmptunsn1 ( ⊤ → ( iω↪ℕ ‘ ω ) = +∞ )
10 9 mptru ( iω↪ℕ ‘ ω ) = +∞