Metamath Proof Explorer


Theorem bj-pinftyccb

Description: The class pinfty is an extended complex number. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-pinftyccb +∞ ∈ ℂ̅

Proof

Step Hyp Ref Expression
1 df-bj-pinfty +∞ = ( +∞ei ‘ 0 )
2 bj-ccinftyssccbar ⊆ ℂ̅
3 0re 0 ∈ ℝ
4 pipos 0 < π
5 pire π ∈ ℝ
6 3 5 ltnegi ( 0 < π ↔ - π < - 0 )
7 4 6 mpbi - π < - 0
8 neg0 - 0 = 0
9 7 8 breqtri - π < 0
10 3 5 4 ltleii 0 ≤ π
11 5 renegcli - π ∈ ℝ
12 11 rexri - π ∈ ℝ*
13 elioc2 ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( 0 ∈ ( - π (,] π ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 ≤ π ) ) )
14 12 5 13 mp2an ( 0 ∈ ( - π (,] π ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 ≤ π ) )
15 3 9 10 14 mpbir3an 0 ∈ ( - π (,] π )
16 bj-elccinfty ( 0 ∈ ( - π (,] π ) → ( +∞ei ‘ 0 ) ∈ ℂ )
17 15 16 ax-mp ( +∞ei ‘ 0 ) ∈ ℂ
18 2 17 sselii ( +∞ei ‘ 0 ) ∈ ℂ̅
19 1 18 eqeltri +∞ ∈ ℂ̅