Description: The class pinfty is an extended complex number. (Contributed by BJ, 27-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-pinftyccb | ⊢ +∞ ∈ ℂ̅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-pinfty | ⊢ +∞ = ( +∞ei ‘ 0 ) | |
2 | bj-ccinftyssccbar | ⊢ ℂ∞ ⊆ ℂ̅ | |
3 | 0re | ⊢ 0 ∈ ℝ | |
4 | pipos | ⊢ 0 < π | |
5 | pire | ⊢ π ∈ ℝ | |
6 | 3 5 | ltnegi | ⊢ ( 0 < π ↔ - π < - 0 ) |
7 | 4 6 | mpbi | ⊢ - π < - 0 |
8 | neg0 | ⊢ - 0 = 0 | |
9 | 7 8 | breqtri | ⊢ - π < 0 |
10 | 3 5 4 | ltleii | ⊢ 0 ≤ π |
11 | 5 | renegcli | ⊢ - π ∈ ℝ |
12 | 11 | rexri | ⊢ - π ∈ ℝ* |
13 | elioc2 | ⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( 0 ∈ ( - π (,] π ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 ≤ π ) ) ) | |
14 | 12 5 13 | mp2an | ⊢ ( 0 ∈ ( - π (,] π ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 ≤ π ) ) |
15 | 3 9 10 14 | mpbir3an | ⊢ 0 ∈ ( - π (,] π ) |
16 | bj-elccinfty | ⊢ ( 0 ∈ ( - π (,] π ) → ( +∞ei ‘ 0 ) ∈ ℂ∞ ) | |
17 | 15 16 | ax-mp | ⊢ ( +∞ei ‘ 0 ) ∈ ℂ∞ |
18 | 2 17 | sselii | ⊢ ( +∞ei ‘ 0 ) ∈ ℂ̅ |
19 | 1 18 | eqeltri | ⊢ +∞ ∈ ℂ̅ |