Metamath Proof Explorer


Theorem bj-pinftyccb

Description: The class pinfty is an extended complex number. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-pinftyccb
|- pinfty e. CCbar

Proof

Step Hyp Ref Expression
1 df-bj-pinfty
 |-  pinfty = ( inftyexpi ` 0 )
2 bj-ccinftyssccbar
 |-  CCinfty C_ CCbar
3 0re
 |-  0 e. RR
4 pipos
 |-  0 < _pi
5 pire
 |-  _pi e. RR
6 3 5 ltnegi
 |-  ( 0 < _pi <-> -u _pi < -u 0 )
7 4 6 mpbi
 |-  -u _pi < -u 0
8 neg0
 |-  -u 0 = 0
9 7 8 breqtri
 |-  -u _pi < 0
10 3 5 4 ltleii
 |-  0 <_ _pi
11 5 renegcli
 |-  -u _pi e. RR
12 11 rexri
 |-  -u _pi e. RR*
13 elioc2
 |-  ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( 0 e. ( -u _pi (,] _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ _pi ) ) )
14 12 5 13 mp2an
 |-  ( 0 e. ( -u _pi (,] _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ _pi ) )
15 3 9 10 14 mpbir3an
 |-  0 e. ( -u _pi (,] _pi )
16 bj-elccinfty
 |-  ( 0 e. ( -u _pi (,] _pi ) -> ( inftyexpi ` 0 ) e. CCinfty )
17 15 16 ax-mp
 |-  ( inftyexpi ` 0 ) e. CCinfty
18 2 17 sselii
 |-  ( inftyexpi ` 0 ) e. CCbar
19 1 18 eqeltri
 |-  pinfty e. CCbar