Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-pinfty |
|- pinfty = ( inftyexpi ` 0 ) |
2 |
|
bj-ccinftyssccbar |
|- CCinfty C_ CCbar |
3 |
|
0re |
|- 0 e. RR |
4 |
|
pipos |
|- 0 < _pi |
5 |
|
pire |
|- _pi e. RR |
6 |
3 5
|
ltnegi |
|- ( 0 < _pi <-> -u _pi < -u 0 ) |
7 |
4 6
|
mpbi |
|- -u _pi < -u 0 |
8 |
|
neg0 |
|- -u 0 = 0 |
9 |
7 8
|
breqtri |
|- -u _pi < 0 |
10 |
3 5 4
|
ltleii |
|- 0 <_ _pi |
11 |
5
|
renegcli |
|- -u _pi e. RR |
12 |
11
|
rexri |
|- -u _pi e. RR* |
13 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( 0 e. ( -u _pi (,] _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ _pi ) ) ) |
14 |
12 5 13
|
mp2an |
|- ( 0 e. ( -u _pi (,] _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ _pi ) ) |
15 |
3 9 10 14
|
mpbir3an |
|- 0 e. ( -u _pi (,] _pi ) |
16 |
|
bj-elccinfty |
|- ( 0 e. ( -u _pi (,] _pi ) -> ( inftyexpi ` 0 ) e. CCinfty ) |
17 |
15 16
|
ax-mp |
|- ( inftyexpi ` 0 ) e. CCinfty |
18 |
2 17
|
sselii |
|- ( inftyexpi ` 0 ) e. CCbar |
19 |
1 18
|
eqeltri |
|- pinfty e. CCbar |