| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-bj-pinfty |
|- pinfty = ( inftyexpi ` 0 ) |
| 2 |
|
bj-ccinftyssccbar |
|- CCinfty C_ CCbar |
| 3 |
|
0re |
|- 0 e. RR |
| 4 |
|
pipos |
|- 0 < _pi |
| 5 |
|
pire |
|- _pi e. RR |
| 6 |
3 5
|
ltnegi |
|- ( 0 < _pi <-> -u _pi < -u 0 ) |
| 7 |
4 6
|
mpbi |
|- -u _pi < -u 0 |
| 8 |
|
neg0 |
|- -u 0 = 0 |
| 9 |
7 8
|
breqtri |
|- -u _pi < 0 |
| 10 |
3 5 4
|
ltleii |
|- 0 <_ _pi |
| 11 |
5
|
renegcli |
|- -u _pi e. RR |
| 12 |
11
|
rexri |
|- -u _pi e. RR* |
| 13 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( 0 e. ( -u _pi (,] _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ _pi ) ) ) |
| 14 |
12 5 13
|
mp2an |
|- ( 0 e. ( -u _pi (,] _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ _pi ) ) |
| 15 |
3 9 10 14
|
mpbir3an |
|- 0 e. ( -u _pi (,] _pi ) |
| 16 |
|
bj-elccinfty |
|- ( 0 e. ( -u _pi (,] _pi ) -> ( inftyexpi ` 0 ) e. CCinfty ) |
| 17 |
15 16
|
ax-mp |
|- ( inftyexpi ` 0 ) e. CCinfty |
| 18 |
2 17
|
sselii |
|- ( inftyexpi ` 0 ) e. CCbar |
| 19 |
1 18
|
eqeltri |
|- pinfty e. CCbar |