Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-inftyexpi |
|- inftyexpi = ( x e. ( -u _pi (,] _pi ) |-> <. x , CC >. ) |
2 |
1
|
funmpt2 |
|- Fun inftyexpi |
3 |
2
|
jctl |
|- ( A e. dom inftyexpi -> ( Fun inftyexpi /\ A e. dom inftyexpi ) ) |
4 |
|
opex |
|- <. x , CC >. e. _V |
5 |
4 1
|
dmmpti |
|- dom inftyexpi = ( -u _pi (,] _pi ) |
6 |
5
|
eqcomi |
|- ( -u _pi (,] _pi ) = dom inftyexpi |
7 |
3 6
|
eleq2s |
|- ( A e. ( -u _pi (,] _pi ) -> ( Fun inftyexpi /\ A e. dom inftyexpi ) ) |
8 |
|
fvelrn |
|- ( ( Fun inftyexpi /\ A e. dom inftyexpi ) -> ( inftyexpi ` A ) e. ran inftyexpi ) |
9 |
|
df-bj-ccinfty |
|- CCinfty = ran inftyexpi |
10 |
9
|
eqcomi |
|- ran inftyexpi = CCinfty |
11 |
10
|
eleq2i |
|- ( ( inftyexpi ` A ) e. ran inftyexpi <-> ( inftyexpi ` A ) e. CCinfty ) |
12 |
11
|
biimpi |
|- ( ( inftyexpi ` A ) e. ran inftyexpi -> ( inftyexpi ` A ) e. CCinfty ) |
13 |
7 8 12
|
3syl |
|- ( A e. ( -u _pi (,] _pi ) -> ( inftyexpi ` A ) e. CCinfty ) |