Step |
Hyp |
Ref |
Expression |
1 |
|
df-bj-inftyexpi |
⊢ +∞ei = ( 𝑥 ∈ ( - π (,] π ) ↦ 〈 𝑥 , ℂ 〉 ) |
2 |
1
|
funmpt2 |
⊢ Fun +∞ei |
3 |
2
|
jctl |
⊢ ( 𝐴 ∈ dom +∞ei → ( Fun +∞ei ∧ 𝐴 ∈ dom +∞ei ) ) |
4 |
|
opex |
⊢ 〈 𝑥 , ℂ 〉 ∈ V |
5 |
4 1
|
dmmpti |
⊢ dom +∞ei = ( - π (,] π ) |
6 |
5
|
eqcomi |
⊢ ( - π (,] π ) = dom +∞ei |
7 |
3 6
|
eleq2s |
⊢ ( 𝐴 ∈ ( - π (,] π ) → ( Fun +∞ei ∧ 𝐴 ∈ dom +∞ei ) ) |
8 |
|
fvelrn |
⊢ ( ( Fun +∞ei ∧ 𝐴 ∈ dom +∞ei ) → ( +∞ei ‘ 𝐴 ) ∈ ran +∞ei ) |
9 |
|
df-bj-ccinfty |
⊢ ℂ∞ = ran +∞ei |
10 |
9
|
eqcomi |
⊢ ran +∞ei = ℂ∞ |
11 |
10
|
eleq2i |
⊢ ( ( +∞ei ‘ 𝐴 ) ∈ ran +∞ei ↔ ( +∞ei ‘ 𝐴 ) ∈ ℂ∞ ) |
12 |
11
|
biimpi |
⊢ ( ( +∞ei ‘ 𝐴 ) ∈ ran +∞ei → ( +∞ei ‘ 𝐴 ) ∈ ℂ∞ ) |
13 |
7 8 12
|
3syl |
⊢ ( 𝐴 ∈ ( - π (,] π ) → ( +∞ei ‘ 𝐴 ) ∈ ℂ∞ ) |