Metamath Proof Explorer


Theorem bj-elccinfty

Description: A lemma for infinite extended complex numbers. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-elccinfty A π π inftyexpi A

Proof

Step Hyp Ref Expression
1 df-bj-inftyexpi inftyexpi = x π π x
2 1 funmpt2 Fun inftyexpi
3 2 jctl A dom inftyexpi Fun inftyexpi A dom inftyexpi
4 opex x V
5 4 1 dmmpti dom inftyexpi = π π
6 5 eqcomi π π = dom inftyexpi
7 3 6 eleq2s A π π Fun inftyexpi A dom inftyexpi
8 fvelrn Fun inftyexpi A dom inftyexpi inftyexpi A ran inftyexpi
9 df-bj-ccinfty = ran inftyexpi
10 9 eqcomi ran inftyexpi =
11 10 eleq2i inftyexpi A ran inftyexpi inftyexpi A
12 11 biimpi inftyexpi A ran inftyexpi inftyexpi A
13 7 8 12 3syl A π π inftyexpi A