Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Extended real and complex numbers, real and complex projective lines
Extended numbers and projective lines as sets
bj-elccinfty
Next ⟩
cccbar
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-elccinfty
Description:
A lemma for infinite extended complex numbers.
(Contributed by
BJ
, 27-Jun-2019)
Ref
Expression
Assertion
bj-elccinfty
⊢
A
∈
−
π
π
→
inftyexpi
⁡
A
∈
ℂ
∞
Proof
Step
Hyp
Ref
Expression
1
df-bj-inftyexpi
⊢
inftyexpi
=
x
∈
−
π
π
⟼
x
ℂ
2
1
funmpt2
⊢
Fun
⁡
inftyexpi
3
2
jctl
⊢
A
∈
dom
⁡
inftyexpi
→
Fun
⁡
inftyexpi
∧
A
∈
dom
⁡
inftyexpi
4
opex
⊢
x
ℂ
∈
V
5
4
1
dmmpti
⊢
dom
⁡
inftyexpi
=
−
π
π
6
5
eqcomi
⊢
−
π
π
=
dom
⁡
inftyexpi
7
3
6
eleq2s
⊢
A
∈
−
π
π
→
Fun
⁡
inftyexpi
∧
A
∈
dom
⁡
inftyexpi
8
fvelrn
⊢
Fun
⁡
inftyexpi
∧
A
∈
dom
⁡
inftyexpi
→
inftyexpi
⁡
A
∈
ran
⁡
inftyexpi
9
df-bj-ccinfty
⊢
ℂ
∞
=
ran
⁡
inftyexpi
10
9
eqcomi
⊢
ran
⁡
inftyexpi
=
ℂ
∞
11
10
eleq2i
⊢
inftyexpi
⁡
A
∈
ran
⁡
inftyexpi
↔
inftyexpi
⁡
A
∈
ℂ
∞
12
11
biimpi
⊢
inftyexpi
⁡
A
∈
ran
⁡
inftyexpi
→
inftyexpi
⁡
A
∈
ℂ
∞
13
7
8
12
3syl
⊢
A
∈
−
π
π
→
inftyexpi
⁡
A
∈
ℂ
∞