Metamath Proof Explorer


Theorem bj-ndxarg

Description: Proof of ndxarg from bj-evalid . (Contributed by BJ, 27-Dec-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ndxarg.1 E=SlotN
bj-ndxarg.2 N
Assertion bj-ndxarg Endx=N

Proof

Step Hyp Ref Expression
1 bj-ndxarg.1 E=SlotN
2 bj-ndxarg.2 N
3 nnex V
4 df-ndx ndx=I
5 1 4 fveq12i Endx=SlotNI
6 bj-evalid VNSlotNI=N
7 5 6 eqtrid VNEndx=N
8 3 2 7 mp2an Endx=N