Metamath Proof Explorer


Theorem bj-ndxarg

Description: Proof of ndxarg from bj-evalid . (Contributed by BJ, 27-Dec-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ndxarg.1 E = Slot N
bj-ndxarg.2 N
Assertion bj-ndxarg E ndx = N

Proof

Step Hyp Ref Expression
1 bj-ndxarg.1 E = Slot N
2 bj-ndxarg.2 N
3 nnex V
4 df-ndx ndx = I
5 1 4 fveq12i E ndx = Slot N I
6 bj-evalid V N Slot N I = N
7 5 6 syl5eq V N E ndx = N
8 3 2 7 mp2an E ndx = N