Description: Proof of ndxarg from bj-evalid . (Contributed by BJ, 27-Dec-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-ndxarg.1 | |- E = Slot N |
|
bj-ndxarg.2 | |- N e. NN |
||
Assertion | bj-ndxarg | |- ( E ` ndx ) = N |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ndxarg.1 | |- E = Slot N |
|
2 | bj-ndxarg.2 | |- N e. NN |
|
3 | nnex | |- NN e. _V |
|
4 | df-ndx | |- ndx = ( _I |` NN ) |
|
5 | 1 4 | fveq12i | |- ( E ` ndx ) = ( Slot N ` ( _I |` NN ) ) |
6 | bj-evalid | |- ( ( NN e. _V /\ N e. NN ) -> ( Slot N ` ( _I |` NN ) ) = N ) |
|
7 | 5 6 | syl5eq | |- ( ( NN e. _V /\ N e. NN ) -> ( E ` ndx ) = N ) |
8 | 3 2 7 | mp2an | |- ( E ` ndx ) = N |