Metamath Proof Explorer


Theorem bj-ndxarg

Description: Proof of ndxarg from bj-evalid . (Contributed by BJ, 27-Dec-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-ndxarg.1
|- E = Slot N
bj-ndxarg.2
|- N e. NN
Assertion bj-ndxarg
|- ( E ` ndx ) = N

Proof

Step Hyp Ref Expression
1 bj-ndxarg.1
 |-  E = Slot N
2 bj-ndxarg.2
 |-  N e. NN
3 nnex
 |-  NN e. _V
4 df-ndx
 |-  ndx = ( _I |` NN )
5 1 4 fveq12i
 |-  ( E ` ndx ) = ( Slot N ` ( _I |` NN ) )
6 bj-evalid
 |-  ( ( NN e. _V /\ N e. NN ) -> ( Slot N ` ( _I |` NN ) ) = N )
7 5 6 syl5eq
 |-  ( ( NN e. _V /\ N e. NN ) -> ( E ` ndx ) = N )
8 3 2 7 mp2an
 |-  ( E ` ndx ) = N