Metamath Proof Explorer


Theorem bj-evalidval

Description: Closed general form of strndxid . Both sides are equal to ( FA ) by bj-evalid and bj-evalval respectively, but bj-evalidval adds something to bj-evalid and bj-evalval in that Slot A appears on both sides. (Contributed by BJ, 27-Dec-2021)

Ref Expression
Assertion bj-evalidval
|- ( ( V e. W /\ A e. V /\ F e. U ) -> ( F ` ( Slot A ` ( _I |` V ) ) ) = ( Slot A ` F ) )

Proof

Step Hyp Ref Expression
1 bj-evalid
 |-  ( ( V e. W /\ A e. V ) -> ( Slot A ` ( _I |` V ) ) = A )
2 1 fveq2d
 |-  ( ( V e. W /\ A e. V ) -> ( F ` ( Slot A ` ( _I |` V ) ) ) = ( F ` A ) )
3 2 3adant3
 |-  ( ( V e. W /\ A e. V /\ F e. U ) -> ( F ` ( Slot A ` ( _I |` V ) ) ) = ( F ` A ) )
4 bj-evalval
 |-  ( F e. U -> ( Slot A ` F ) = ( F ` A ) )
5 4 eqcomd
 |-  ( F e. U -> ( F ` A ) = ( Slot A ` F ) )
6 5 3ad2ant3
 |-  ( ( V e. W /\ A e. V /\ F e. U ) -> ( F ` A ) = ( Slot A ` F ) )
7 3 6 eqtrd
 |-  ( ( V e. W /\ A e. V /\ F e. U ) -> ( F ` ( Slot A ` ( _I |` V ) ) ) = ( Slot A ` F ) )