Step |
Hyp |
Ref |
Expression |
1 |
|
bj-evalid |
|- ( ( V e. W /\ A e. V ) -> ( Slot A ` ( _I |` V ) ) = A ) |
2 |
1
|
fveq2d |
|- ( ( V e. W /\ A e. V ) -> ( F ` ( Slot A ` ( _I |` V ) ) ) = ( F ` A ) ) |
3 |
2
|
3adant3 |
|- ( ( V e. W /\ A e. V /\ F e. U ) -> ( F ` ( Slot A ` ( _I |` V ) ) ) = ( F ` A ) ) |
4 |
|
bj-evalval |
|- ( F e. U -> ( Slot A ` F ) = ( F ` A ) ) |
5 |
4
|
eqcomd |
|- ( F e. U -> ( F ` A ) = ( Slot A ` F ) ) |
6 |
5
|
3ad2ant3 |
|- ( ( V e. W /\ A e. V /\ F e. U ) -> ( F ` A ) = ( Slot A ` F ) ) |
7 |
3 6
|
eqtrd |
|- ( ( V e. W /\ A e. V /\ F e. U ) -> ( F ` ( Slot A ` ( _I |` V ) ) ) = ( Slot A ` F ) ) |