Step |
Hyp |
Ref |
Expression |
1 |
|
bj-evalid |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( Slot 𝐴 ‘ ( I ↾ 𝑉 ) ) = 𝐴 ) |
2 |
1
|
fveq2d |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐹 ‘ ( Slot 𝐴 ‘ ( I ↾ 𝑉 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈 ) → ( 𝐹 ‘ ( Slot 𝐴 ‘ ( I ↾ 𝑉 ) ) ) = ( 𝐹 ‘ 𝐴 ) ) |
4 |
|
bj-evalval |
⊢ ( 𝐹 ∈ 𝑈 → ( Slot 𝐴 ‘ 𝐹 ) = ( 𝐹 ‘ 𝐴 ) ) |
5 |
4
|
eqcomd |
⊢ ( 𝐹 ∈ 𝑈 → ( 𝐹 ‘ 𝐴 ) = ( Slot 𝐴 ‘ 𝐹 ) ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈 ) → ( 𝐹 ‘ 𝐴 ) = ( Slot 𝐴 ‘ 𝐹 ) ) |
7 |
3 6
|
eqtrd |
⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐹 ∈ 𝑈 ) → ( 𝐹 ‘ ( Slot 𝐴 ‘ ( I ↾ 𝑉 ) ) ) = ( Slot 𝐴 ‘ 𝐹 ) ) |