Metamath Proof Explorer


Theorem bj-nfext

Description: Closed form of nfex . (Contributed by BJ, 10-Oct-2019)

Ref Expression
Assertion bj-nfext xyφyxφ

Proof

Step Hyp Ref Expression
1 nf5 yφyφyφ
2 1 biimpi yφyφyφ
3 2 alimi xyφxyφyφ
4 nfa2 yxyφyφ
5 bj-hbext xyφyφxφyxφ
6 4 5 alrimi xyφyφyxφyxφ
7 3 6 syl xyφyxφyxφ
8 nf5 yxφyxφyxφ
9 7 8 sylibr xyφyxφ