Metamath Proof Explorer


Theorem bj-eeanvw

Description: Version of exdistrv with a disjoint variable condition on x , y not requiring ax-11 . (The same can be done with eeeanv and ee4anv .) (Contributed by BJ, 29-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-eeanvw x y φ ψ x φ y ψ

Proof

Step Hyp Ref Expression
1 19.42v y φ ψ φ y ψ
2 1 exbii x y φ ψ x φ y ψ
3 19.41v x φ y ψ x φ y ψ
4 2 3 bitri x y φ ψ x φ y ψ