Metamath Proof Explorer


Theorem bj-eeanvw

Description: Version of exdistrv with a disjoint variable condition on x , y not requiring ax-11 . (The same can be done with eeeanv and ee4anv .) (Contributed by BJ, 29-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-eeanvw
|- ( E. x E. y ( ph /\ ps ) <-> ( E. x ph /\ E. y ps ) )

Proof

Step Hyp Ref Expression
1 19.42v
 |-  ( E. y ( ph /\ ps ) <-> ( ph /\ E. y ps ) )
2 1 exbii
 |-  ( E. x E. y ( ph /\ ps ) <-> E. x ( ph /\ E. y ps ) )
3 19.41v
 |-  ( E. x ( ph /\ E. y ps ) <-> ( E. x ph /\ E. y ps ) )
4 2 3 bitri
 |-  ( E. x E. y ( ph /\ ps ) <-> ( E. x ph /\ E. y ps ) )