Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
First-order logic
Adding ax-13
bj-nfs1t
Next ⟩
bj-nfs1t2
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-nfs1t
Description:
A theorem close to a closed form of
nfs1
.
(Contributed by
BJ
, 2-May-2019)
Ref
Expression
Assertion
bj-nfs1t
⊢
∀
x
φ
→
∀
y
φ
→
Ⅎ
x
y
x
φ
Proof
Step
Hyp
Ref
Expression
1
bj-hbsb3t
⊢
∀
x
φ
→
∀
y
φ
→
y
x
φ
→
∀
x
y
x
φ
2
1
axc4i
⊢
∀
x
φ
→
∀
y
φ
→
∀
x
y
x
φ
→
∀
x
y
x
φ
3
nf5
⊢
Ⅎ
x
y
x
φ
↔
∀
x
y
x
φ
→
∀
x
y
x
φ
4
2
3
sylibr
⊢
∀
x
φ
→
∀
y
φ
→
Ⅎ
x
y
x
φ