Metamath Proof Explorer


Theorem bj-nnfa1

Description: See nfa1 . (Contributed by BJ, 12-Aug-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nnfa1 Ⅎ'xxφ

Proof

Step Hyp Ref Expression
1 hbe1a xxφxφ
2 bj-modal4 xφxxφ
3 df-bj-nnf Ⅎ'xxφxxφxφxφxxφ
4 1 2 3 mpbir2an Ⅎ'xxφ