Metamath Proof Explorer


Theorem bj-nnfbid

Description: Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-nnfbid.1 φℲ'xψ
bj-nnfbid.2 φℲ'xχ
Assertion bj-nnfbid φℲ'xψχ

Proof

Step Hyp Ref Expression
1 bj-nnfbid.1 φℲ'xψ
2 bj-nnfbid.2 φℲ'xχ
3 bj-nnfim Ⅎ'xψℲ'xχℲ'xψχ
4 1 2 3 syl2anc φℲ'xψχ
5 bj-nnfim Ⅎ'xχℲ'xψℲ'xχψ
6 2 1 5 syl2anc φℲ'xχψ
7 4 6 bj-nnfand φℲ'xψχχψ
8 dfbi2 ψχψχχψ
9 8 bj-nnfbii Ⅎ'xψχℲ'xψχχψ
10 7 9 sylibr φℲ'xψχ