Metamath Proof Explorer


Theorem bj-rabtrALT

Description: Alternate proof of bj-rabtr . (Contributed by BJ, 22-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-rabtrALT xA|=A

Proof

Step Hyp Ref Expression
1 nfrab1 _xxA|
2 nfcv _xA
3 1 2 cleqf xA|=AxxxA|xA
4 tru
5 rabid xxA|xA
6 4 5 mpbiran2 xxA|xA
7 3 6 mpgbir xA|=A