Description: Alternate proof of bj-rabtr . (Contributed by BJ, 22-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-rabtrALT | |- { x e. A | T. } = A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 | |- F/_ x { x e. A | T. } |
|
2 | nfcv | |- F/_ x A |
|
3 | 1 2 | cleqf | |- ( { x e. A | T. } = A <-> A. x ( x e. { x e. A | T. } <-> x e. A ) ) |
4 | tru | |- T. |
|
5 | rabid | |- ( x e. { x e. A | T. } <-> ( x e. A /\ T. ) ) |
|
6 | 4 5 | mpbiran2 | |- ( x e. { x e. A | T. } <-> x e. A ) |
7 | 3 6 | mpgbir | |- { x e. A | T. } = A |