Description: Alternate proof of bj-rabtr . (Contributed by BJ, 22-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-rabtrALT | |- { x e. A | T. } = A | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfrab1 |  |-  F/_ x { x e. A | T. } | |
| 2 | nfcv | |- F/_ x A | |
| 3 | 1 2 | cleqf |  |-  ( { x e. A | T. } = A <-> A. x ( x e. { x e. A | T. } <-> x e. A ) ) | 
| 4 | tru | |- T. | |
| 5 | rabid |  |-  ( x e. { x e. A | T. } <-> ( x e. A /\ T. ) ) | |
| 6 | 4 5 | mpbiran2 |  |-  ( x e. { x e. A | T. } <-> x e. A ) | 
| 7 | 3 6 | mpgbir |  |-  { x e. A | T. } = A |