Metamath Proof Explorer


Theorem bj-rabtrAUTO

Description: Proof of bj-rabtr found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE__WITH *". (Contributed by BJ, 22-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-rabtrAUTO
|- { x e. A | T. } = A

Proof

Step Hyp Ref Expression
1 ssrab2
 |-  { x e. A | T. } C_ A
2 ssid
 |-  A C_ A
3 2 a1i
 |-  ( T. -> A C_ A )
4 simpl
 |-  ( ( T. /\ x e. A ) -> T. )
5 3 4 ssrabdv
 |-  ( T. -> A C_ { x e. A | T. } )
6 5 mptru
 |-  A C_ { x e. A | T. }
7 1 6 eqssi
 |-  { x e. A | T. } = A