Metamath Proof Explorer


Theorem bj-rabtrAUTO

Description: Proof of bj-rabtr found automatically by the Metamath program "MM-PA> IMPROVE ALL / DEPTH 3 / 3" command followed by "MM-PA> MINIMIZE__WITH *". (Contributed by BJ, 22-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-rabtrAUTO { 𝑥𝐴 ∣ ⊤ } = 𝐴

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑥𝐴 ∣ ⊤ } ⊆ 𝐴
2 ssid 𝐴𝐴
3 2 a1i ( ⊤ → 𝐴𝐴 )
4 simpl ( ( ⊤ ∧ 𝑥𝐴 ) → ⊤ )
5 3 4 ssrabdv ( ⊤ → 𝐴 ⊆ { 𝑥𝐴 ∣ ⊤ } )
6 5 mptru 𝐴 ⊆ { 𝑥𝐴 ∣ ⊤ }
7 1 6 eqssi { 𝑥𝐴 ∣ ⊤ } = 𝐴