Metamath Proof Explorer
		
		
		
		Description:  Restricted class abstraction with true formula.  (Contributed by BJ, 22-Apr-2019)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | bj-rabtr | ⊢  { 𝑥  ∈  𝐴  ∣  ⊤ }  =  𝐴 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐴  ∣  ⊤ }  ⊆  𝐴 | 
						
							| 2 |  | ssid | ⊢ 𝐴  ⊆  𝐴 | 
						
							| 3 |  | tru | ⊢ ⊤ | 
						
							| 4 | 3 | rgenw | ⊢ ∀ 𝑥  ∈  𝐴 ⊤ | 
						
							| 5 |  | ssrab | ⊢ ( 𝐴  ⊆  { 𝑥  ∈  𝐴  ∣  ⊤ }  ↔  ( 𝐴  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ⊤ ) ) | 
						
							| 6 | 2 4 5 | mpbir2an | ⊢ 𝐴  ⊆  { 𝑥  ∈  𝐴  ∣  ⊤ } | 
						
							| 7 | 1 6 | eqssi | ⊢ { 𝑥  ∈  𝐴  ∣  ⊤ }  =  𝐴 |