Description: Alternate proof of bj-rabtr . (Contributed by BJ, 22-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-rabtrALT | ⊢ { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐴 ∣ ⊤ } | |
2 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
3 | 1 2 | cleqf | ⊢ ( { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ⊤ } ↔ 𝑥 ∈ 𝐴 ) ) |
4 | tru | ⊢ ⊤ | |
5 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ⊤ } ↔ ( 𝑥 ∈ 𝐴 ∧ ⊤ ) ) | |
6 | 4 5 | mpbiran2 | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ⊤ } ↔ 𝑥 ∈ 𝐴 ) |
7 | 3 6 | mpgbir | ⊢ { 𝑥 ∈ 𝐴 ∣ ⊤ } = 𝐴 |