Metamath Proof Explorer


Theorem bj-rabtrALT

Description: Alternate proof of bj-rabtr . (Contributed by BJ, 22-Apr-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-rabtrALT { 𝑥𝐴 ∣ ⊤ } = 𝐴

Proof

Step Hyp Ref Expression
1 nfrab1 𝑥 { 𝑥𝐴 ∣ ⊤ }
2 nfcv 𝑥 𝐴
3 1 2 cleqf ( { 𝑥𝐴 ∣ ⊤ } = 𝐴 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑥𝐴 ∣ ⊤ } ↔ 𝑥𝐴 ) )
4 tru
5 rabid ( 𝑥 ∈ { 𝑥𝐴 ∣ ⊤ } ↔ ( 𝑥𝐴 ∧ ⊤ ) )
6 4 5 mpbiran2 ( 𝑥 ∈ { 𝑥𝐴 ∣ ⊤ } ↔ 𝑥𝐴 )
7 3 6 mpgbir { 𝑥𝐴 ∣ ⊤ } = 𝐴