Metamath Proof Explorer


Theorem bj-rabtr

Description: Restricted class abstraction with true formula. (Contributed by BJ, 22-Apr-2019)

Ref Expression
Assertion bj-rabtr
|- { x e. A | T. } = A

Proof

Step Hyp Ref Expression
1 ssrab2
 |-  { x e. A | T. } C_ A
2 ssid
 |-  A C_ A
3 tru
 |-  T.
4 3 rgenw
 |-  A. x e. A T.
5 ssrab
 |-  ( A C_ { x e. A | T. } <-> ( A C_ A /\ A. x e. A T. ) )
6 2 4 5 mpbir2an
 |-  A C_ { x e. A | T. }
7 1 6 eqssi
 |-  { x e. A | T. } = A