Metamath Proof Explorer


Theorem bj-spcimdv

Description: Remove from spcimdv dependency on ax-9 , ax-10 , ax-11 , ax-13 , ax-ext , df-cleq (and df-nfc , df-v , df-or , df-tru , df-nf ). For an even more economical version, see bj-spcimdvv . (Contributed by BJ, 30-Nov-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-spcimdv.1 φ A B
bj-spcimdv.2 φ x = A ψ χ
Assertion bj-spcimdv φ x ψ χ

Proof

Step Hyp Ref Expression
1 bj-spcimdv.1 φ A B
2 bj-spcimdv.2 φ x = A ψ χ
3 2 ex φ x = A ψ χ
4 3 alrimiv φ x x = A ψ χ
5 elisset A B x x = A
6 exim x x = A ψ χ x x = A x ψ χ
7 5 6 syl5 x x = A ψ χ A B x ψ χ
8 19.36v x ψ χ x ψ χ
9 7 8 syl6ib x x = A ψ χ A B x ψ χ
10 4 1 9 sylc φ x ψ χ