Metamath Proof Explorer


Theorem bncmet

Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1 X=BaseM
iscms.2 D=distMX×X
Assertion bncmet MBanDCMetX

Proof

Step Hyp Ref Expression
1 iscms.1 X=BaseM
2 iscms.2 D=distMX×X
3 bncms MBanMCMetSp
4 1 2 cmscmet MCMetSpDCMetX
5 3 4 syl MBanDCMetX