Metamath Proof Explorer


Theorem bnj1133

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1133.3 D = ω
bnj1133.5 χ n D f Fn n φ ψ
bnj1133.7 τ j n j E i [˙j / i]˙ θ
bnj1133.8 i n τ θ
Assertion bnj1133 χ i n θ

Proof

Step Hyp Ref Expression
1 bnj1133.3 D = ω
2 bnj1133.5 χ n D f Fn n φ ψ
3 bnj1133.7 τ j n j E i [˙j / i]˙ θ
4 bnj1133.8 i n τ θ
5 1 bnj1071 n D E Fr n
6 2 5 bnj769 χ E Fr n
7 impexp i n τ θ i n τ θ
8 7 bicomi i n τ θ i n τ θ
9 8 albii i i n τ θ i i n τ θ
10 9 4 mpgbir i i n τ θ
11 df-ral i n τ θ i i n τ θ
12 10 11 mpbir i n τ θ
13 vex n V
14 13 3 bnj110 E Fr n i n τ θ i n θ
15 6 12 14 sylancl χ i n θ