Metamath Proof Explorer


Theorem bnj1147

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1147 trCl X A R A

Proof

Step Hyp Ref Expression
1 biid f = pred X A R f = pred X A R
2 biid i ω suc i n f suc i = y f i pred y A R i ω suc i n f suc i = y f i pred y A R
3 eqid ω = ω
4 eqid f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R = f | n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
5 biid n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R
6 biid i i n n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R j n i = suc j i i n n ω f Fn n f = pred X A R i ω suc i n f suc i = y f i pred y A R j n i = suc j
7 1 2 3 4 5 6 bnj1145 trCl X A R A