Metamath Proof Explorer


Theorem bnj1147

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1147 trClXARA

Proof

Step Hyp Ref Expression
1 biid f=predXARf=predXAR
2 biid iωsucinfsuci=yfipredyARiωsucinfsuci=yfipredyAR
3 eqid ω=ω
4 eqid f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
5 biid nωfFnnf=predXARiωsucinfsuci=yfipredyARnωfFnnf=predXARiωsucinfsuci=yfipredyAR
6 biid iinnωfFnnf=predXARiωsucinfsuci=yfipredyARjni=sucjiinnωfFnnf=predXARiωsucinfsuci=yfipredyARjni=sucj
7 1 2 3 4 5 6 bnj1145 trClXARA