Metamath Proof Explorer


Theorem bnj1259

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1259.1 B = d | d A x d pred x A R d
bnj1259.2 Y = x f pred x A R
bnj1259.3 C = f | d B f Fn d x d f x = G Y
bnj1259.4 D = dom g dom h
bnj1259.5 E = x D | g x h x
bnj1259.6 φ R FrSe A g C h C g D h D
bnj1259.7 ψ φ x E y E ¬ y R x
Assertion bnj1259 φ d B h Fn d

Proof

Step Hyp Ref Expression
1 bnj1259.1 B = d | d A x d pred x A R d
2 bnj1259.2 Y = x f pred x A R
3 bnj1259.3 C = f | d B f Fn d x d f x = G Y
4 bnj1259.4 D = dom g dom h
5 bnj1259.5 E = x D | g x h x
6 bnj1259.6 φ R FrSe A g C h C g D h D
7 bnj1259.7 ψ φ x E y E ¬ y R x
8 abid h h | d B h Fn d x d h x = G x h pred x A R d B h Fn d x d h x = G x h pred x A R
9 8 bnj1238 h h | d B h Fn d x d h x = G x h pred x A R d B h Fn d
10 eqid x h pred x A R = x h pred x A R
11 eqid h | d B h Fn d x d h x = G x h pred x A R = h | d B h Fn d x d h x = G x h pred x A R
12 2 3 10 11 bnj1234 C = h | d B h Fn d x d h x = G x h pred x A R
13 9 12 eleq2s h C d B h Fn d
14 6 13 bnj771 φ d B h Fn d