Metamath Proof Explorer


Theorem bnj60

Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj60.1 B=d|dAxdpredxARd
bnj60.2 Y=xfpredxAR
bnj60.3 C=f|dBfFndxdfx=GY
bnj60.4 F=C
Assertion bnj60 RFrSeAFFnA

Proof

Step Hyp Ref Expression
1 bnj60.1 B=d|dAxdpredxARd
2 bnj60.2 Y=xfpredxAR
3 bnj60.3 C=f|dBfFndxdfx=GY
4 bnj60.4 F=C
5 1 2 3 bnj1497 gCFung
6 eqid domgdomh=domgdomh
7 1 2 3 6 bnj1311 RFrSeAgChCgdomgdomh=hdomgdomh
8 7 3expia RFrSeAgChCgdomgdomh=hdomgdomh
9 8 ralrimiv RFrSeAgChCgdomgdomh=hdomgdomh
10 9 ralrimiva RFrSeAgChCgdomgdomh=hdomgdomh
11 biid gCFunggCFung
12 biid gCFunggChCgdomgdomh=hdomgdomhgCFunggChCgdomgdomh=hdomgdomh
13 11 6 12 bnj1383 gCFunggChCgdomgdomh=hdomgdomhFunC
14 5 10 13 sylancr RFrSeAFunC
15 4 funeqi FunFFunC
16 14 15 sylibr RFrSeAFunF
17 1 2 3 4 bnj1498 RFrSeAdomF=A
18 16 17 bnj1422 RFrSeAFFnA