Metamath Proof Explorer


Theorem bnj1497

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1497.1 B = d | d A x d pred x A R d
bnj1497.2 Y = x f pred x A R
bnj1497.3 C = f | d B f Fn d x d f x = G Y
Assertion bnj1497 g C Fun g

Proof

Step Hyp Ref Expression
1 bnj1497.1 B = d | d A x d pred x A R d
2 bnj1497.2 Y = x f pred x A R
3 bnj1497.3 C = f | d B f Fn d x d f x = G Y
4 3 bnj1317 g C f g C
5 4 nf5i f g C
6 nfv f Fun g
7 5 6 nfim f g C Fun g
8 eleq1w f = g f C g C
9 funeq f = g Fun f Fun g
10 8 9 imbi12d f = g f C Fun f g C Fun g
11 3 bnj1436 f C d B f Fn d x d f x = G Y
12 11 bnj1299 f C d B f Fn d
13 fnfun f Fn d Fun f
14 12 13 bnj31 f C d B Fun f
15 14 bnj1265 f C Fun f
16 7 10 15 chvarfv g C Fun g
17 16 rgen g C Fun g