Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1497.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1497.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1497.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
3
|
bnj1317 |
|- ( g e. C -> A. f g e. C ) |
5 |
4
|
nf5i |
|- F/ f g e. C |
6 |
|
nfv |
|- F/ f Fun g |
7 |
5 6
|
nfim |
|- F/ f ( g e. C -> Fun g ) |
8 |
|
eleq1w |
|- ( f = g -> ( f e. C <-> g e. C ) ) |
9 |
|
funeq |
|- ( f = g -> ( Fun f <-> Fun g ) ) |
10 |
8 9
|
imbi12d |
|- ( f = g -> ( ( f e. C -> Fun f ) <-> ( g e. C -> Fun g ) ) ) |
11 |
3
|
bnj1436 |
|- ( f e. C -> E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) ) |
12 |
11
|
bnj1299 |
|- ( f e. C -> E. d e. B f Fn d ) |
13 |
|
fnfun |
|- ( f Fn d -> Fun f ) |
14 |
12 13
|
bnj31 |
|- ( f e. C -> E. d e. B Fun f ) |
15 |
14
|
bnj1265 |
|- ( f e. C -> Fun f ) |
16 |
7 10 15
|
chvarfv |
|- ( g e. C -> Fun g ) |
17 |
16
|
rgen |
|- A. g e. C Fun g |