| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1311.1 |
|
| 2 |
|
bnj1311.2 |
|
| 3 |
|
bnj1311.3 |
|
| 4 |
|
bnj1311.4 |
|
| 5 |
|
biid |
|
| 6 |
5
|
bnj1232 |
|
| 7 |
|
ssrab2 |
|
| 8 |
5
|
bnj1235 |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
2 3 9 10
|
bnj1234 |
|
| 12 |
8 11
|
eleqtrdi |
|
| 13 |
|
abid |
|
| 14 |
13
|
bnj1238 |
|
| 15 |
14
|
bnj1196 |
|
| 16 |
1
|
eqabri |
|
| 17 |
16
|
simplbi |
|
| 18 |
|
fndm |
|
| 19 |
17 18
|
bnj1241 |
|
| 20 |
15 19
|
bnj593 |
|
| 21 |
20
|
bnj937 |
|
| 22 |
|
ssinss1 |
|
| 23 |
12 21 22
|
3syl |
|
| 24 |
4 23
|
eqsstrid |
|
| 25 |
7 24
|
sstrid |
|
| 26 |
|
eqid |
|
| 27 |
|
biid |
|
| 28 |
1 2 3 4 26 5 27
|
bnj1253 |
|
| 29 |
|
nfrab1 |
|
| 30 |
29
|
nfcrii |
|
| 31 |
30
|
bnj1228 |
|
| 32 |
6 25 28 31
|
syl3anc |
|
| 33 |
|
ax-5 |
|
| 34 |
1
|
bnj1309 |
|
| 35 |
3 34
|
bnj1307 |
|
| 36 |
35
|
hblem |
|
| 37 |
35
|
hblem |
|
| 38 |
|
ax-5 |
|
| 39 |
33 36 37 38
|
bnj982 |
|
| 40 |
32 27 39
|
bnj1521 |
|
| 41 |
|
simp2 |
|
| 42 |
1 2 3 4 26 5 27
|
bnj1279 |
|
| 43 |
42
|
3adant1 |
|
| 44 |
1 2 3 4 26 5 27 43
|
bnj1280 |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
1 2 3 4 26 5 27 44 9 10 45 46
|
bnj1296 |
|
| 48 |
26
|
bnj1538 |
|
| 49 |
48
|
necon2bi |
|
| 50 |
47 49
|
syl |
|
| 51 |
40 41 50
|
bnj1304 |
|
| 52 |
|
df-bnj17 |
|
| 53 |
51 52
|
mtbi |
|
| 54 |
53
|
imnani |
|
| 55 |
|
nne |
|
| 56 |
54 55
|
sylib |
|