| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1311.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1311.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1311.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1311.4 |
⊢ 𝐷 = ( dom 𝑔 ∩ dom ℎ ) |
| 5 |
|
biid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
| 6 |
5
|
bnj1232 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → 𝑅 FrSe 𝐴 ) |
| 7 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ⊆ 𝐷 |
| 8 |
5
|
bnj1235 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → 𝑔 ∈ 𝐶 ) |
| 9 |
|
eqid |
⊢ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 10 |
|
eqid |
⊢ { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } = { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } |
| 11 |
2 3 9 10
|
bnj1234 |
⊢ 𝐶 = { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } |
| 12 |
8 11
|
eleqtrdi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → 𝑔 ∈ { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } ) |
| 13 |
|
abid |
⊢ ( 𝑔 ∈ { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) ) |
| 14 |
13
|
bnj1238 |
⊢ ( 𝑔 ∈ { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } → ∃ 𝑑 ∈ 𝐵 𝑔 Fn 𝑑 ) |
| 15 |
14
|
bnj1196 |
⊢ ( 𝑔 ∈ { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑 ) ) |
| 16 |
1
|
eqabri |
⊢ ( 𝑑 ∈ 𝐵 ↔ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 17 |
16
|
simplbi |
⊢ ( 𝑑 ∈ 𝐵 → 𝑑 ⊆ 𝐴 ) |
| 18 |
|
fndm |
⊢ ( 𝑔 Fn 𝑑 → dom 𝑔 = 𝑑 ) |
| 19 |
17 18
|
bnj1241 |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑 ) → dom 𝑔 ⊆ 𝐴 ) |
| 20 |
15 19
|
bnj593 |
⊢ ( 𝑔 ∈ { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } → ∃ 𝑑 dom 𝑔 ⊆ 𝐴 ) |
| 21 |
20
|
bnj937 |
⊢ ( 𝑔 ∈ { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } → dom 𝑔 ⊆ 𝐴 ) |
| 22 |
|
ssinss1 |
⊢ ( dom 𝑔 ⊆ 𝐴 → ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ) |
| 23 |
12 21 22
|
3syl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → ( dom 𝑔 ∩ dom ℎ ) ⊆ 𝐴 ) |
| 24 |
4 23
|
eqsstrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → 𝐷 ⊆ 𝐴 ) |
| 25 |
7 24
|
sstrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ⊆ 𝐴 ) |
| 26 |
|
eqid |
⊢ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } |
| 27 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) ) |
| 28 |
1 2 3 4 26 5 27
|
bnj1253 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ≠ ∅ ) |
| 29 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } |
| 30 |
29
|
nfcrii |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } → ∀ 𝑥 𝑧 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ) |
| 31 |
30
|
bnj1228 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ⊆ 𝐴 ∧ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) |
| 32 |
6 25 28 31
|
syl3anc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → ∃ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) |
| 33 |
|
ax-5 |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑥 𝑅 FrSe 𝐴 ) |
| 34 |
1
|
bnj1309 |
⊢ ( 𝑤 ∈ 𝐵 → ∀ 𝑥 𝑤 ∈ 𝐵 ) |
| 35 |
3 34
|
bnj1307 |
⊢ ( 𝑤 ∈ 𝐶 → ∀ 𝑥 𝑤 ∈ 𝐶 ) |
| 36 |
35
|
hblem |
⊢ ( 𝑔 ∈ 𝐶 → ∀ 𝑥 𝑔 ∈ 𝐶 ) |
| 37 |
35
|
hblem |
⊢ ( ℎ ∈ 𝐶 → ∀ 𝑥 ℎ ∈ 𝐶 ) |
| 38 |
|
ax-5 |
⊢ ( ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) → ∀ 𝑥 ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) |
| 39 |
33 36 37 38
|
bnj982 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → ∀ 𝑥 ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
| 40 |
32 27 39
|
bnj1521 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) → ∃ 𝑥 ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) ) |
| 41 |
|
simp2 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) → 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ) |
| 42 |
1 2 3 4 26 5 27
|
bnj1279 |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ) = ∅ ) |
| 43 |
42
|
3adant1 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ) = ∅ ) |
| 44 |
1 2 3 4 26 5 27 43
|
bnj1280 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) → ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
| 45 |
|
eqid |
⊢ 〈 𝑥 , ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑥 , ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 46 |
|
eqid |
⊢ { ℎ ∣ ∃ 𝑑 ∈ 𝐵 ( ℎ Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } = { ℎ ∣ ∃ 𝑑 ∈ 𝐵 ( ℎ Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( ℎ ‘ 𝑥 ) = ( 𝐺 ‘ 〈 𝑥 , ( ℎ ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) ) } |
| 47 |
1 2 3 4 26 5 27 44 9 10 45 46
|
bnj1296 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) → ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) ) |
| 48 |
26
|
bnj1538 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } → ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) ) |
| 49 |
48
|
necon2bi |
⊢ ( ( 𝑔 ‘ 𝑥 ) = ( ℎ ‘ 𝑥 ) → ¬ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ) |
| 50 |
47 49
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ¬ 𝑦 𝑅 𝑥 ) → ¬ 𝑥 ∈ { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } ) |
| 51 |
40 41 50
|
bnj1304 |
⊢ ¬ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) |
| 52 |
|
df-bnj17 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ) ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
| 53 |
51 52
|
mtbi |
⊢ ¬ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ) ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) |
| 54 |
53
|
imnani |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ) → ¬ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) |
| 55 |
|
nne |
⊢ ( ¬ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ↔ ( 𝑔 ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) ) |
| 56 |
54 55
|
sylib |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ) → ( 𝑔 ↾ 𝐷 ) = ( ℎ ↾ 𝐷 ) ) |