Metamath Proof Explorer
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
bnj1521.1 |
⊢ ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜑 ) |
|
|
bnj1521.2 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
|
|
bnj1521.3 |
⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) |
|
Assertion |
bnj1521 |
⊢ ( 𝜒 → ∃ 𝑥 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1521.1 |
⊢ ( 𝜒 → ∃ 𝑥 ∈ 𝐵 𝜑 ) |
2 |
|
bnj1521.2 |
⊢ ( 𝜃 ↔ ( 𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
3 |
|
bnj1521.3 |
⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) |
4 |
1
|
bnj1196 |
⊢ ( 𝜒 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
5 |
4 2 3
|
bnj1345 |
⊢ ( 𝜒 → ∃ 𝑥 𝜃 ) |