| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1234.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 2 |
|
bnj1234.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 3 |
|
bnj1234.4 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 4 |
|
bnj1234.5 |
⊢ 𝐷 = { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) } |
| 5 |
|
fneq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn 𝑑 ↔ 𝑔 Fn 𝑑 ) ) |
| 6 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑥 ) ) |
| 7 |
|
reseq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) = ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
| 8 |
7
|
opeq2d |
⊢ ( 𝑓 = 𝑔 → 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑥 , ( 𝑔 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) |
| 9 |
8 1 3
|
3eqtr4g |
⊢ ( 𝑓 = 𝑔 → 𝑌 = 𝑍 ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝐺 ‘ 𝑌 ) = ( 𝐺 ‘ 𝑍 ) ) |
| 11 |
6 10
|
eqeq12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ↔ ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ↔ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) |
| 13 |
5 12
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) ) |
| 14 |
13
|
rexbidv |
⊢ ( 𝑓 = 𝑔 → ( ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) ↔ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) ) ) |
| 15 |
14
|
cbvabv |
⊢ { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } = { 𝑔 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑔 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑍 ) ) } |
| 16 |
15 2 4
|
3eqtr4i |
⊢ 𝐶 = 𝐷 |