| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1234.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 2 |
|
bnj1234.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 3 |
|
bnj1234.4 |
|- Z = <. x , ( g |` _pred ( x , A , R ) ) >. |
| 4 |
|
bnj1234.5 |
|- D = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) } |
| 5 |
|
fneq1 |
|- ( f = g -> ( f Fn d <-> g Fn d ) ) |
| 6 |
|
fveq1 |
|- ( f = g -> ( f ` x ) = ( g ` x ) ) |
| 7 |
|
reseq1 |
|- ( f = g -> ( f |` _pred ( x , A , R ) ) = ( g |` _pred ( x , A , R ) ) ) |
| 8 |
7
|
opeq2d |
|- ( f = g -> <. x , ( f |` _pred ( x , A , R ) ) >. = <. x , ( g |` _pred ( x , A , R ) ) >. ) |
| 9 |
8 1 3
|
3eqtr4g |
|- ( f = g -> Y = Z ) |
| 10 |
9
|
fveq2d |
|- ( f = g -> ( G ` Y ) = ( G ` Z ) ) |
| 11 |
6 10
|
eqeq12d |
|- ( f = g -> ( ( f ` x ) = ( G ` Y ) <-> ( g ` x ) = ( G ` Z ) ) ) |
| 12 |
11
|
ralbidv |
|- ( f = g -> ( A. x e. d ( f ` x ) = ( G ` Y ) <-> A. x e. d ( g ` x ) = ( G ` Z ) ) ) |
| 13 |
5 12
|
anbi12d |
|- ( f = g -> ( ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) ) |
| 14 |
13
|
rexbidv |
|- ( f = g -> ( E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) <-> E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) ) ) |
| 15 |
14
|
cbvabv |
|- { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } = { g | E. d e. B ( g Fn d /\ A. x e. d ( g ` x ) = ( G ` Z ) ) } |
| 16 |
15 2 4
|
3eqtr4i |
|- C = D |