| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1245.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1245.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1245.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1245.4 |
|- D = ( dom g i^i dom h ) |
| 5 |
|
bnj1245.5 |
|- E = { x e. D | ( g ` x ) =/= ( h ` x ) } |
| 6 |
|
bnj1245.6 |
|- ( ph <-> ( R _FrSe A /\ g e. C /\ h e. C /\ ( g |` D ) =/= ( h |` D ) ) ) |
| 7 |
|
bnj1245.7 |
|- ( ps <-> ( ph /\ x e. E /\ A. y e. E -. y R x ) ) |
| 8 |
|
bnj1245.8 |
|- Z = <. x , ( h |` _pred ( x , A , R ) ) >. |
| 9 |
|
bnj1245.9 |
|- K = { h | E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` Z ) ) } |
| 10 |
6
|
bnj1247 |
|- ( ph -> h e. C ) |
| 11 |
2 3 8 9
|
bnj1234 |
|- C = K |
| 12 |
10 11
|
eleqtrdi |
|- ( ph -> h e. K ) |
| 13 |
9
|
eqabri |
|- ( h e. K <-> E. d e. B ( h Fn d /\ A. x e. d ( h ` x ) = ( G ` Z ) ) ) |
| 14 |
13
|
bnj1238 |
|- ( h e. K -> E. d e. B h Fn d ) |
| 15 |
14
|
bnj1196 |
|- ( h e. K -> E. d ( d e. B /\ h Fn d ) ) |
| 16 |
1
|
eqabri |
|- ( d e. B <-> ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) ) |
| 17 |
16
|
simplbi |
|- ( d e. B -> d C_ A ) |
| 18 |
|
fndm |
|- ( h Fn d -> dom h = d ) |
| 19 |
17 18
|
bnj1241 |
|- ( ( d e. B /\ h Fn d ) -> dom h C_ A ) |
| 20 |
15 19
|
bnj593 |
|- ( h e. K -> E. d dom h C_ A ) |
| 21 |
20
|
bnj937 |
|- ( h e. K -> dom h C_ A ) |
| 22 |
12 21
|
syl |
|- ( ph -> dom h C_ A ) |