Metamath Proof Explorer


Theorem bnj1253

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1253.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1253.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1253.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1253.4 𝐷 = ( dom 𝑔 ∩ dom )
bnj1253.5 𝐸 = { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) }
bnj1253.6 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ ( 𝑔𝐷 ) ≠ ( 𝐷 ) ) )
bnj1253.7 ( 𝜓 ↔ ( 𝜑𝑥𝐸 ∧ ∀ 𝑦𝐸 ¬ 𝑦 𝑅 𝑥 ) )
Assertion bnj1253 ( 𝜑𝐸 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 bnj1253.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1253.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1253.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1253.4 𝐷 = ( dom 𝑔 ∩ dom )
5 bnj1253.5 𝐸 = { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) }
6 bnj1253.6 ( 𝜑 ↔ ( 𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ ( 𝑔𝐷 ) ≠ ( 𝐷 ) ) )
7 bnj1253.7 ( 𝜓 ↔ ( 𝜑𝑥𝐸 ∧ ∀ 𝑦𝐸 ¬ 𝑦 𝑅 𝑥 ) )
8 6 bnj1254 ( 𝜑 → ( 𝑔𝐷 ) ≠ ( 𝐷 ) )
9 1 2 3 4 5 6 7 bnj1256 ( 𝜑 → ∃ 𝑑𝐵 𝑔 Fn 𝑑 )
10 4 bnj1292 𝐷 ⊆ dom 𝑔
11 fndm ( 𝑔 Fn 𝑑 → dom 𝑔 = 𝑑 )
12 10 11 sseqtrid ( 𝑔 Fn 𝑑𝐷𝑑 )
13 fnssres ( ( 𝑔 Fn 𝑑𝐷𝑑 ) → ( 𝑔𝐷 ) Fn 𝐷 )
14 12 13 mpdan ( 𝑔 Fn 𝑑 → ( 𝑔𝐷 ) Fn 𝐷 )
15 9 14 bnj31 ( 𝜑 → ∃ 𝑑𝐵 ( 𝑔𝐷 ) Fn 𝐷 )
16 15 bnj1265 ( 𝜑 → ( 𝑔𝐷 ) Fn 𝐷 )
17 1 2 3 4 5 6 7 bnj1259 ( 𝜑 → ∃ 𝑑𝐵 Fn 𝑑 )
18 4 bnj1293 𝐷 ⊆ dom
19 fndm ( Fn 𝑑 → dom = 𝑑 )
20 18 19 sseqtrid ( Fn 𝑑𝐷𝑑 )
21 fnssres ( ( Fn 𝑑𝐷𝑑 ) → ( 𝐷 ) Fn 𝐷 )
22 20 21 mpdan ( Fn 𝑑 → ( 𝐷 ) Fn 𝐷 )
23 17 22 bnj31 ( 𝜑 → ∃ 𝑑𝐵 ( 𝐷 ) Fn 𝐷 )
24 23 bnj1265 ( 𝜑 → ( 𝐷 ) Fn 𝐷 )
25 ssid 𝐷𝐷
26 fvreseq ( ( ( ( 𝑔𝐷 ) Fn 𝐷 ∧ ( 𝐷 ) Fn 𝐷 ) ∧ 𝐷𝐷 ) → ( ( ( 𝑔𝐷 ) ↾ 𝐷 ) = ( ( 𝐷 ) ↾ 𝐷 ) ↔ ∀ 𝑥𝐷 ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ) )
27 25 26 mpan2 ( ( ( 𝑔𝐷 ) Fn 𝐷 ∧ ( 𝐷 ) Fn 𝐷 ) → ( ( ( 𝑔𝐷 ) ↾ 𝐷 ) = ( ( 𝐷 ) ↾ 𝐷 ) ↔ ∀ 𝑥𝐷 ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ) )
28 16 24 27 syl2anc ( 𝜑 → ( ( ( 𝑔𝐷 ) ↾ 𝐷 ) = ( ( 𝐷 ) ↾ 𝐷 ) ↔ ∀ 𝑥𝐷 ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ) )
29 residm ( ( 𝑔𝐷 ) ↾ 𝐷 ) = ( 𝑔𝐷 )
30 residm ( ( 𝐷 ) ↾ 𝐷 ) = ( 𝐷 )
31 29 30 eqeq12i ( ( ( 𝑔𝐷 ) ↾ 𝐷 ) = ( ( 𝐷 ) ↾ 𝐷 ) ↔ ( 𝑔𝐷 ) = ( 𝐷 ) )
32 df-ral ( ∀ 𝑥𝐷 ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥𝐷 → ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ) )
33 28 31 32 3bitr3g ( 𝜑 → ( ( 𝑔𝐷 ) = ( 𝐷 ) ↔ ∀ 𝑥 ( 𝑥𝐷 → ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ) ) )
34 fvres ( 𝑥𝐷 → ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( 𝑔𝑥 ) )
35 fvres ( 𝑥𝐷 → ( ( 𝐷 ) ‘ 𝑥 ) = ( 𝑥 ) )
36 34 35 eqeq12d ( 𝑥𝐷 → ( ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ↔ ( 𝑔𝑥 ) = ( 𝑥 ) ) )
37 36 pm5.74i ( ( 𝑥𝐷 → ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ) ↔ ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) )
38 37 albii ( ∀ 𝑥 ( 𝑥𝐷 → ( ( 𝑔𝐷 ) ‘ 𝑥 ) = ( ( 𝐷 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) )
39 33 38 bitrdi ( 𝜑 → ( ( 𝑔𝐷 ) = ( 𝐷 ) ↔ ∀ 𝑥 ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) ) )
40 39 necon3abid ( 𝜑 → ( ( 𝑔𝐷 ) ≠ ( 𝐷 ) ↔ ¬ ∀ 𝑥 ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) ) )
41 df-rex ( ∃ 𝑥𝐷 ( 𝑔𝑥 ) ≠ ( 𝑥 ) ↔ ∃ 𝑥 ( 𝑥𝐷 ∧ ( 𝑔𝑥 ) ≠ ( 𝑥 ) ) )
42 pm4.61 ( ¬ ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) ↔ ( 𝑥𝐷 ∧ ¬ ( 𝑔𝑥 ) = ( 𝑥 ) ) )
43 df-ne ( ( 𝑔𝑥 ) ≠ ( 𝑥 ) ↔ ¬ ( 𝑔𝑥 ) = ( 𝑥 ) )
44 43 anbi2i ( ( 𝑥𝐷 ∧ ( 𝑔𝑥 ) ≠ ( 𝑥 ) ) ↔ ( 𝑥𝐷 ∧ ¬ ( 𝑔𝑥 ) = ( 𝑥 ) ) )
45 42 44 bitr4i ( ¬ ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) ↔ ( 𝑥𝐷 ∧ ( 𝑔𝑥 ) ≠ ( 𝑥 ) ) )
46 45 exbii ( ∃ 𝑥 ¬ ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑥𝐷 ∧ ( 𝑔𝑥 ) ≠ ( 𝑥 ) ) )
47 exnal ( ∃ 𝑥 ¬ ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) )
48 41 46 47 3bitr2ri ( ¬ ∀ 𝑥 ( 𝑥𝐷 → ( 𝑔𝑥 ) = ( 𝑥 ) ) ↔ ∃ 𝑥𝐷 ( 𝑔𝑥 ) ≠ ( 𝑥 ) )
49 40 48 bitrdi ( 𝜑 → ( ( 𝑔𝐷 ) ≠ ( 𝐷 ) ↔ ∃ 𝑥𝐷 ( 𝑔𝑥 ) ≠ ( 𝑥 ) ) )
50 8 49 mpbid ( 𝜑 → ∃ 𝑥𝐷 ( 𝑔𝑥 ) ≠ ( 𝑥 ) )
51 5 neeq1i ( 𝐸 ≠ ∅ ↔ { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) } ≠ ∅ )
52 rabn0 ( { 𝑥𝐷 ∣ ( 𝑔𝑥 ) ≠ ( 𝑥 ) } ≠ ∅ ↔ ∃ 𝑥𝐷 ( 𝑔𝑥 ) ≠ ( 𝑥 ) )
53 51 52 bitri ( 𝐸 ≠ ∅ ↔ ∃ 𝑥𝐷 ( 𝑔𝑥 ) ≠ ( 𝑥 ) )
54 50 53 sylibr ( 𝜑𝐸 ≠ ∅ )