| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1279.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1279.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1279.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1279.4 |
⊢ 𝐷 = ( dom 𝑔 ∩ dom ℎ ) |
| 5 |
|
bnj1279.5 |
⊢ 𝐸 = { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } |
| 6 |
|
bnj1279.6 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
| 7 |
|
bnj1279.7 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) ) |
| 8 |
|
n0 |
⊢ ( ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ) |
| 9 |
|
elin |
⊢ ( 𝑦 ∈ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ↔ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑦 ∈ 𝐸 ) ) |
| 10 |
9
|
exbii |
⊢ ( ∃ 𝑦 𝑦 ∈ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ↔ ∃ 𝑦 ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑦 ∈ 𝐸 ) ) |
| 11 |
8 10
|
sylbb |
⊢ ( ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ → ∃ 𝑦 ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑦 ∈ 𝐸 ) ) |
| 12 |
|
df-bnj14 |
⊢ pred ( 𝑥 , 𝐴 , 𝑅 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑥 } |
| 13 |
12
|
bnj1538 |
⊢ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑦 𝑅 𝑥 ) |
| 14 |
13
|
anim1i |
⊢ ( ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝑦 ∈ 𝐸 ) → ( 𝑦 𝑅 𝑥 ∧ 𝑦 ∈ 𝐸 ) ) |
| 15 |
11 14
|
bnj593 |
⊢ ( ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ → ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ 𝑦 ∈ 𝐸 ) ) |
| 16 |
15
|
3ad2ant3 |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) → ∃ 𝑦 ( 𝑦 𝑅 𝑥 ∧ 𝑦 ∈ 𝐸 ) ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐸 |
| 18 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 |
| 19 |
|
nfv |
⊢ Ⅎ 𝑦 ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ |
| 20 |
17 18 19
|
nf3an |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) |
| 21 |
20
|
nf5ri |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) → ∀ 𝑦 ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) ) |
| 22 |
16 21
|
bnj1275 |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) → ∃ 𝑦 ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) ∧ 𝑦 𝑅 𝑥 ∧ 𝑦 ∈ 𝐸 ) ) |
| 23 |
|
simp2 |
⊢ ( ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) ∧ 𝑦 𝑅 𝑥 ∧ 𝑦 ∈ 𝐸 ) → 𝑦 𝑅 𝑥 ) |
| 24 |
|
simp12 |
⊢ ( ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) ∧ 𝑦 𝑅 𝑥 ∧ 𝑦 ∈ 𝐸 ) → ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) |
| 25 |
|
simp3 |
⊢ ( ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) ∧ 𝑦 𝑅 𝑥 ∧ 𝑦 ∈ 𝐸 ) → 𝑦 ∈ 𝐸 ) |
| 26 |
24 25
|
bnj1294 |
⊢ ( ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) ∧ 𝑦 𝑅 𝑥 ∧ 𝑦 ∈ 𝐸 ) → ¬ 𝑦 𝑅 𝑥 ) |
| 27 |
22 23 26
|
bnj1304 |
⊢ ¬ ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ∧ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) |
| 28 |
27
|
bnj1224 |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) → ¬ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ) |
| 29 |
|
nne |
⊢ ( ¬ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) ≠ ∅ ↔ ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) = ∅ ) |
| 30 |
28 29
|
sylib |
⊢ ( ( 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∩ 𝐸 ) = ∅ ) |