| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1286.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1286.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1286.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1286.4 |
⊢ 𝐷 = ( dom 𝑔 ∩ dom ℎ ) |
| 5 |
|
bnj1286.5 |
⊢ 𝐸 = { 𝑥 ∈ 𝐷 ∣ ( 𝑔 ‘ 𝑥 ) ≠ ( ℎ ‘ 𝑥 ) } |
| 6 |
|
bnj1286.6 |
⊢ ( 𝜑 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ ( 𝑔 ↾ 𝐷 ) ≠ ( ℎ ↾ 𝐷 ) ) ) |
| 7 |
|
bnj1286.7 |
⊢ ( 𝜓 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀ 𝑦 ∈ 𝐸 ¬ 𝑦 𝑅 𝑥 ) ) |
| 8 |
1 2 3 4 5 6 7
|
bnj1256 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 𝑔 Fn 𝑑 ) |
| 9 |
8
|
bnj1196 |
⊢ ( 𝜑 → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑 ) ) |
| 10 |
1
|
bnj1517 |
⊢ ( 𝑑 ∈ 𝐵 → ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑 ) → ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
| 12 |
|
fndm |
⊢ ( 𝑔 Fn 𝑑 → dom 𝑔 = 𝑑 ) |
| 13 |
|
sseq2 |
⊢ ( dom 𝑔 = 𝑑 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ↔ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 14 |
13
|
raleqbi1dv |
⊢ ( dom 𝑔 = 𝑑 → ( ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ↔ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 15 |
12 14
|
syl |
⊢ ( 𝑔 Fn 𝑑 → ( ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ↔ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑 ) → ( ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ↔ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 17 |
11 16
|
mpbird |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑 ) → ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ) |
| 18 |
9 17
|
bnj593 |
⊢ ( 𝜑 → ∃ 𝑑 ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ) |
| 19 |
18
|
bnj937 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ) |
| 20 |
7 19
|
bnj835 |
⊢ ( 𝜓 → ∀ 𝑥 ∈ dom 𝑔 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ) |
| 21 |
5
|
ssrab3 |
⊢ 𝐸 ⊆ 𝐷 |
| 22 |
4
|
bnj1292 |
⊢ 𝐷 ⊆ dom 𝑔 |
| 23 |
21 22
|
sstri |
⊢ 𝐸 ⊆ dom 𝑔 |
| 24 |
23
|
sseli |
⊢ ( 𝑥 ∈ 𝐸 → 𝑥 ∈ dom 𝑔 ) |
| 25 |
7 24
|
bnj836 |
⊢ ( 𝜓 → 𝑥 ∈ dom 𝑔 ) |
| 26 |
20 25
|
bnj1294 |
⊢ ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom 𝑔 ) |
| 27 |
1 2 3 4 5 6 7
|
bnj1259 |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐵 ℎ Fn 𝑑 ) |
| 28 |
27
|
bnj1196 |
⊢ ( 𝜑 → ∃ 𝑑 ( 𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑 ) ) |
| 29 |
10
|
adantr |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑 ) → ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) |
| 30 |
|
fndm |
⊢ ( ℎ Fn 𝑑 → dom ℎ = 𝑑 ) |
| 31 |
|
sseq2 |
⊢ ( dom ℎ = 𝑑 → ( pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ↔ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 32 |
31
|
raleqbi1dv |
⊢ ( dom ℎ = 𝑑 → ( ∀ 𝑥 ∈ dom ℎ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ↔ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 33 |
30 32
|
syl |
⊢ ( ℎ Fn 𝑑 → ( ∀ 𝑥 ∈ dom ℎ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ↔ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑 ) → ( ∀ 𝑥 ∈ dom ℎ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ↔ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) ) |
| 35 |
29 34
|
mpbird |
⊢ ( ( 𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑 ) → ∀ 𝑥 ∈ dom ℎ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ) |
| 36 |
28 35
|
bnj593 |
⊢ ( 𝜑 → ∃ 𝑑 ∀ 𝑥 ∈ dom ℎ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ) |
| 37 |
36
|
bnj937 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ dom ℎ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ) |
| 38 |
7 37
|
bnj835 |
⊢ ( 𝜓 → ∀ 𝑥 ∈ dom ℎ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ) |
| 39 |
4
|
bnj1293 |
⊢ 𝐷 ⊆ dom ℎ |
| 40 |
21 39
|
sstri |
⊢ 𝐸 ⊆ dom ℎ |
| 41 |
40
|
sseli |
⊢ ( 𝑥 ∈ 𝐸 → 𝑥 ∈ dom ℎ ) |
| 42 |
7 41
|
bnj836 |
⊢ ( 𝜓 → 𝑥 ∈ dom ℎ ) |
| 43 |
38 42
|
bnj1294 |
⊢ ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ dom ℎ ) |
| 44 |
26 43
|
ssind |
⊢ ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ ( dom 𝑔 ∩ dom ℎ ) ) |
| 45 |
44 4
|
sseqtrrdi |
⊢ ( 𝜓 → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐷 ) |