Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bnj1517.1 | ⊢ 𝐴 = { 𝑥 ∣ ( 𝜑 ∧ 𝜓 ) } | |
| Assertion | bnj1517 | ⊢ ( 𝑥 ∈ 𝐴 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1517.1 | ⊢ 𝐴 = { 𝑥 ∣ ( 𝜑 ∧ 𝜓 ) } | |
| 2 | 1 | bnj1436 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 ∧ 𝜓 ) ) |
| 3 | 2 | simprd | ⊢ ( 𝑥 ∈ 𝐴 → 𝜓 ) |